Model Overview
Each AI model in mixus has specific limitations that affect how you can use them. Understanding these limits helps you choose the right model for your tasks and optimize your usage.Context Window Limits
GPT-4o
Maximum Context: 128,000 tokensCopy
Ask AI
Context Allocation:
├── Total capacity: 128,000 tokens
├── System prompts: ~2,000 tokens
├── User content: ~120,000 tokens
├── Response buffer: ~6,000 tokens
└── Safety margin: Variable
Practical Usage:
├── Large documents: ~90 pages
├── Code files: ~50,000 lines
├── Conversation: ~300 exchanges
└── Mixed content: Balanced allocation
```text
### Claude 4 Sonnet
**Maximum Context: 1,000,000 tokens**
```text
Context Allocation:
├── Total capacity: 1,000,000 tokens
├── System prompts: ~3,000 tokens
├── User content: ~990,000 tokens
├── Response buffer: ~7,000 tokens
└── Safety margin: Variable
Practical Usage:
├── Large documents: ~750 pages
├── Code files: ~75,000+ lines (entire codebases)
├── Conversation: ~2,500 exchanges
└── Mixed content: Massive allocation for complex workflows
```text
### Claude 3.5 Sonnet
**Maximum Context: 200,000 tokens**
```text
Context Allocation:
├── Total capacity: 200,000 tokens
├── System prompts: ~3,000 tokens
├── User content: ~190,000 tokens
├── Response buffer: ~7,000 tokens
└── Safety margin: Variable
Practical Usage:
├── Large documents: ~150 pages
├── Code files: ~80,000 lines
├── Conversation: ~500 exchanges
└── Mixed content: Generous allocation
```text
### o1-preview
**Maximum Context: 128,000 tokens**
```text
Context Allocation:
├── Total capacity: 128,000 tokens
├── Reasoning space: ~20,000 tokens
├── User content: ~100,000 tokens
├── Response buffer: ~8,000 tokens
└── Internal processing: Variable
Practical Usage:
├── Complex problems: ~75 pages
├── Mathematical content: ~40,000 lines
├── Deep analysis: ~200 exchanges
└── Problem-solving: Optimized for reasoning
```text
### GPT-4o mini
**Maximum Context: 128,000 tokens**
```text
Context Allocation:
├── Total capacity: 128,000 tokens
├── System prompts: ~1,500 tokens
├── User content: ~120,000 tokens
├── Response buffer: ~6,500 tokens
└── Efficiency focus: Fast processing
Practical Usage:
├── Quick tasks: ~90 pages
├── Simple code: ~50,000 lines
├── Basic chat: ~400 exchanges
└── Cost-effective: High efficiency
```text
## Response Length Limits
### Maximum Response Sizes
**By Model:**
```text
GPT-4o:
├── Max response: 4,096 tokens
├── Typical response: 1,000-2,000 tokens
├── Streaming: Real-time delivery
└── Quality: High coherence maintained
Claude 3.5 Sonnet:
├── Max response: 4,096 tokens
├── Typical response: 1,500-3,000 tokens
├── Streaming: Real-time delivery
└── Quality: Excellent for long-form content
o1-preview:
├── Max response: 32,768 tokens
├── Typical response: 2,000-8,000 tokens
├── Streaming: Not available (reasoning mode)
└── Quality: Highly detailed responses
GPT-4o mini:
├── Max response: 4,096 tokens
├── Typical response: 500-1,500 tokens
├── Streaming: Real-time delivery
└── Quality: Good for concise tasks
```text
## Processing Timeouts
### Request Timeouts by Model
**Standard Timeouts:**
```text
GPT-4o:
├── Simple queries: 30 seconds
├── Complex analysis: 2 minutes
├── Large file processing: 5 minutes
└── Multi-step tasks: 10 minutes
Claude 3.5 Sonnet:
├── Simple queries: 30 seconds
├── Complex analysis: 3 minutes
├── Large file processing: 7 minutes
└── Multi-step tasks: 12 minutes
o1-preview:
├── Simple reasoning: 2 minutes
├── Complex problems: 10 minutes
├── Mathematical proofs: 15 minutes
└── Deep analysis: 20 minutes
GPT-4o mini:
├── Simple queries: 15 seconds
├── Basic analysis: 1 minute
├── File processing: 3 minutes
└── Quick tasks: 5 minutes
```text
### Timeout Handling
**Automatic Retries:**
```text
Retry Logic:
├── Network timeouts: 3 automatic retries
├── Model timeouts: 2 automatic retries
├── Processing errors: 1 automatic retry
└── Rate limit errors: Exponential backoff
Graceful Degradation:
├── Model fallback: Switch to faster model
├── Content chunking: Break large requests
├── Streaming responses: Partial results
└── Error recovery: Meaningful error messages
```text
## Concurrent Request Limits
### Simultaneous Requests by Plan
**Request Concurrency:**
```text
Free Plan:
├── GPT-4o mini: 1 concurrent request
├── Other models: Not available
├── Queue position: Standard priority
└── Wait time: 2-5 minutes during peak
Pro Plan:
├── All models: 3 concurrent requests
├── Priority processing: Medium priority
├── Queue position: Ahead of free users
└── Wait time: 30 seconds-2 minutes
Team Plan:
├── All models: 10 concurrent requests
├── Priority processing: High priority
├── Queue position: Dedicated lanes
└── Wait time: 5-30 seconds
Enterprise:
├── All models: 50+ concurrent requests
├── Priority processing: Highest priority
├── Queue position: Dedicated infrastructure
└── Wait time: <5 seconds guaranteed
```text
## Model-Specific Constraints
### GPT-4o Limitations
**Strengths & Constraints:**
```text
Best For:
├── General conversation
├── Code generation
├── Creative writing
├── Problem solving
Limitations:
├── Knowledge cutoff: October 2023
├── Real-time data: Requires web search
├── Mathematical reasoning: Good but not specialized
├── Image generation: Not supported
├── Audio processing: Not supported
```text
### Claude 3.5 Sonnet Limitations
**Strengths & Constraints:**
```text
Best For:
├── Long-form content
├── Analysis and reasoning
├── Code review
├── Research tasks
Limitations:
├── Knowledge cutoff: April 2024
├── Real-time data: Requires web search
├── Creative tasks: Conservative approach
├── Image generation: Not supported
├── Function calling: Limited compared to GPT
```text
### o1-preview Limitations
**Strengths & Constraints:**
```text
Best For:
├── Complex problem solving
├── Mathematical reasoning
├── Scientific analysis
├── Multi-step reasoning
Limitations:
├── Processing time: Significantly slower
├── Cost: Higher token consumption
├── Streaming: Not available
├── Simple tasks: Overkill and expensive
├── Real-time chat: Not recommended
```text
### GPT-4o mini Limitations
**Strengths & Constraints:**
```text
Best For:
├── Quick responses
├── Simple tasks
├── High-volume processing
├── Cost-sensitive applications
Limitations:
├── Complex reasoning: Limited capability
├── Long documents: May miss nuances
├── Creative tasks: Basic level
├── Technical depth: Reduced compared to full models
```text
## Memory and Context Management
### Context Optimization
**Automatic Management:**
```text
Context Pruning:
├── Old messages: Removed first
├── System prompts: Always preserved
├── File content: Kept when possible
├── Important context: User-marked preservation
Smart Truncation:
├── Conversation history: Intelligent summarization
├── File content: Keep most relevant sections
├── Memory references: Prioritize recent and important
├── User preferences: Respect manual selections
```text
### Memory Integration
**Memory System Limits:**
```text
Memory Usage:
├── Auto-retrieval: Top 5 relevant memories
├── Manual selection: Up to 10 memories
├── Context consumption: ~100-500 tokens per memory
├── Relevance scoring: AI-powered selection
Integration Constraints:
├── Memory content: Counted against context limit
├── Search time: <2 seconds for retrieval
├── Relevance threshold: Configurable per user
├── Update frequency: Real-time for new memories
```text
## Performance Characteristics
### Response Time Patterns
**Typical Performance:**
```text
Response Time Factors:
├── Model complexity: o1 > Claude > GPT-4o > mini
├── Input length: Linear scaling with content
├── Task complexity: Non-linear scaling
├── Server load: Variable based on demand
Optimization Strategies:
├── Streaming: Reduces perceived latency
├── Caching: Faster responses for similar queries
├── Load balancing: Distributes requests efficiently
├── Regional servers: Reduces network latency
```text
### Quality vs Speed Trade-offs
**Model Selection Guidelines:**
```text
For Speed (GPT-4o mini):
├── Simple Q&A
├── Basic code completion
├── Quick translations
├── High-volume processing
For Balance (GPT-4o):
├── General conversation
├── Code generation
├── Content creation
├── Most use cases
For Quality (Claude 3.5):
├── Long-form analysis
├── Complex reasoning
├── Research tasks
├── Detailed explanations
For Deep Thinking (o1-preview):
├── Mathematical problems
├── Scientific reasoning
├── Complex problem solving
├── Multi-step analysis
```text
## Error Handling and Limits
### Common Error Types
**Context Limit Errors:**
```text
Error: "Input exceeds maximum context length"
Solutions:
├── Reduce conversation history
├── Summarize large documents
├── Split requests into smaller parts
├── Use models with larger context windows
```text
**Timeout Errors:**
```text
Error: "Request timed out"
Solutions:
├── Simplify the request
├── Use a faster model
├── Break complex tasks into steps
├── Retry with smaller input
```text
**Concurrent Limit Errors:**
```text
Error: "Too many concurrent requests"
Solutions:
├── Wait for current requests to complete
├── Implement request queuing
├── Upgrade to higher plan tier
├── Optimize request frequency
```text
## API-Specific Limits
### Rate Limiting by Model
**Model-Specific Rates:**
```text
GPT-4o:
├── Free: 5 requests per hour
├── Pro: 100 requests per hour
├── Team: 500 requests per hour
├── Enterprise: Custom limits
Claude 3.5 Sonnet:
├── Free: 3 requests per hour
├── Pro: 80 requests per hour
├── Team: 400 requests per hour
├── Enterprise: Custom limits
o1-preview:
├── Free: 2 requests per hour
├── Pro: 20 requests per hour
├── Team: 100 requests per hour
├── Enterprise: Custom limits
GPT-4o mini:
├── Free: 20 requests per hour
├── Pro: 500 requests per hour
├── Team: 2,000 requests per hour
├── Enterprise: Custom limits
```text
## Best Practices
### Model Selection
**Choosing the Right Model:**
```text
Decision Framework:
├── Task complexity: Match model capability to need
├── Response time: Balance speed vs quality
├── Cost considerations: Optimize for budget
├── Context requirements: Consider input size
Guidelines:
├── Start with GPT-4o for general use
├── Use mini for simple, high-volume tasks
├── Choose Claude for analysis and long content
├── Reserve o1 for complex reasoning problems
```text
### Context Optimization
**Efficient Context Usage:**
```text
Best Practices:
├── Provide clear, concise prompts
├── Remove unnecessary conversation history
├── Summarize large documents before upload
├── Use memory system for important information
Optimization Techniques:
├── Template prompts for repetitive tasks
├── Chunk large content into manageable pieces
├── Use appropriate models for task complexity
├── Monitor context usage in real-time
```text
## Monitoring and Analytics
### Usage Tracking
**Model Performance Metrics:**
```text
Tracked Metrics:
├── Response time per model
├── Context utilization efficiency
├── Error rates by model type
├── Cost per interaction by model
Analytics Dashboard:
├── Model usage distribution
├── Performance trends over time
├── Cost optimization recommendations
├── Error pattern analysis
```text
## Next Steps
- [Understand rate limits](/limits/rate-limits)
- [Learn about storage limits](/limits/storage)
- [Explore AI models](/ai-models/overview)
## Related Resources
- [Token Usage](/tokens/how-it-works)
- [AI Models Overview](/ai-models/overview)
- [Performance Optimization](/ai-models/limits)